17a-Estradiol Exerts Neuroprotective Effects on SK-N-SH Cells
نویسندگان
چکیده
Estradiol (E2) has been shown to exert organizational, neurotrophic, and neuroprotective effects in the CNS. The present study assessed the specificity of the neuroprotective effects of estradiol for the potent 17b-isomer. SK-N-SH cells from a human neuroblastoma cell line, which we have shown to be estrogen-responsive, were cultured at low or high plating density. Then cells were exposed to 17b-E2 (0.2 or 2 nM), 17a-E2 (0.2 or 2 nM), or cholesterol, testosterone, dihydrotestosterone, progesterone, or corticosterone (all at 2 nM). Cultures were insulted by serum deprivation, which caused a profound loss of cells. At 1 or 2 d of serum deprivation and steroid hormone replacement, the protection afforded cells by the steroid addition was assessed. Serum deprivation killed ;90% of cells cultured at both low and high plating density. Both 17aand 17b-E2 provided protection of SK-N-SH cells at either plating density. Further, a 10-fold molar excess of tamoxifen antagonized only approximately one-third of the neuroprotective effects of either isomer of estradiol, and a 100-fold excess of tamoxifen had no additional effect on the neuroprotection by 17b-E2. By contrast, none of the other steroids tested protected cells from the insult of serum deprivation. These results indicate that the neuroprotective effects of estrogens are not attributable to the general steroid structure, and the majority of the neuroprotection may not be mediated via a tamoxifenantagonized receptor mechanism.
منابع مشابه
The Effects of Boswellia Resin Extract on Dopaminergic Cell line, SK-N-SH, against MPP+-Induced Neurotoxicity
Introduction: Oxidative stress and neuroinflammation are involved in neurodegeneration procedure in Parkinson’s disease. Recently, neuroprotective potential of Boswellia resin has been demonstrated. Therefore, this study examined whether administration of Boswellia resin would attenuate MPP+- induced neuronal death in SK-N-SH- cell line, a human dopaminergic neurons- in vitro. Methods: Boswelli...
متن کاملThe nonfeminizing enantiomer of 17beta-estradiol exerts protective effects in neuronal cultures and a rat model of cerebral ischemia.
Estrogens are potent neuroprotective compounds in a variety of animal and cell culture models, and data indicate that estrogen receptor (ER)-mediated gene transcription is not required for some of these effects. To further address the requirement for an ER in estrogen enhancement of neuronal survival, we assessed the enantiomer of 17beta-estradiol (ENT-E(2)), which has identical chemical proper...
متن کاملNeuroprotective Effects of Cirsium setidens, Pleurospermum kamtschaticumin, and Allium victorials Based on Antioxidant and p38 Phosphorylation Inhibitory Activities in SK-N-SH Neuronal Cells
Oxidative stress is one of the key mechanisms involved in neuronal damage. Neuroprotective effects and underlying mechanisms of action of several wild vegetables, Cirsium setidens (CS), Pleurospermum kamtschaticumin (PK), and Allium victorials (AV), against oxidative stress induced by hydrogen peroxide in SK-N-SH cells were investigated. CS and AV up to 400 μg/mL showed no detectable effects on...
متن کاملPiperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson's disease model
Parkinson's disease (PD) is the second most common neurodegenerative disorder, but there are few treatments currently available. The autophagy pathway plays an important role in the pathogenesis of PD; modulating this pathway is considered to be a promising treatment strategy. Piperine (PIP) is a Chinese medicine with anti-inflammatory and antioxidant effects. The present study investigated the...
متن کاملNeuroprotective effects of Liriope platyphylla extract against hydrogen peroxide-induced cytotoxicity in human neuroblastoma SH-SY5Y cells
BACKGROUND Oxidative stress is involved in neuronal cell death and mitochondrial dysfunction in neurodegenerative diseases. Liriope platyphylla (LP) has been suggested to have anti-inflammation, anti-bacterial, and anti-cancer effects. However, whether LP exerts neuroprotective effects on neuronal cells is unknown. METHODS The present study was performed to investigate the neuroprotective eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996